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ABSTRACT

Point Distribution Modelling (PDM) is an efficient generative
technique that can be used to incorporate statistical shape priors
into image analysis methods like Active Shape Models (ASMs)
or Active Appearance Models (AAMs). They are described by
a set of landmarks usually manually pinpointed in a training set.
Frangi et al. [1] have proposed an automatic auto-landmarking
technique capable of dealing with multi-object arrangements. In
this paper, we present an experimental extension of this previous
work, validating the method provided. Our contributions can be
summarized as follows: A two-chamber shape model of the heart
is constructed from a large data-set comprising 90 subjects and
considering 5 phases of the cardiac cycle. The computational
demand of our technique is addressed using Grid computing. The
results of our experiments suggest that the method presented in [1]
as a proof-of-concept, can truly cope with the large inter-subject
and inter-phase deformations present in clinical cardiac data sets
including pathologies. The achieved accuracy in our validation is
comparable to the former tests.

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a promising modality for
one-stop-shop cardiac examination thanks to its increased spatial
and temporal resolution and its ability to provide quantitative
morphological and functional information of the heart. An
inevitable step before pursuing any kind of quantitative and/or
functional analysis, is the segmentation of the cardiac chambers.
As the amount of data in dynamic 3D cardiac scans is very large,
manual segmentation is not viable, and thus automatic methods
are required. During the last few years, model-driven methods
and, in particular, statistical 3D models, are being developed for
3D cardiac image segmentation [2], [3]. In a cardiac 3D Point
Distribution Model (PDM), a set of landmarks is positioned in
the endo and epi boundaries of the ventricles. These landmarks
have to be placed in a consistent way over a large database of
training shapes to ensure that the final model gathers representative
statistics of the shape population. Manual landmarking of dynamic
3D structures like the heart is basically unfeasible due to the
large number of landmarks and training shapes that are required
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for the construction of detailed spatio-temporal models. The
purpose of this paper is thus to further validate the approach in
[1] and to investigate the properties of a 3D+t bi-ventricular model
constructed from a large population of healthy and diseased hearts,
at different instants of the cardiac cycle.

2. THEORY

2.1. Statistical Shape Models

Consider a set X = {xi; i = 1 · · ·n} of n shapes. Each shape
is described by the concatenation of m 3–D landmarks pj =
(p1j , p2j , p3j); j = 1 · · ·m, obtained from a surface triangulation.
X is thus a distribution in a 3m-dimensional space. The goal is
to obtain a general and reasonably compact representation of the
population, learnt from the training set. This representation allows
to approximate any shape using the following linear model

x = x̂ + Φb (1)

where x̂ = 1
n

∑n
i=1 xi is the average landmark vector, b is the

shape parameter vector of the model, and Φ is a matrix whose
columns are the principal components of the covariance matrix
S = 1

n−1

∑n
i=1(xi − x̂)(xi − x̂)T . The principal components

of S are calculated as its eigenvectors, φi, with corresponding
eigenvalues, λi (sorted so that λi ≥ λi+1). If Φ contains
only the first t < min{m, n} eigenvectors corresponding to the
largest non-zero eigenvalues, we can approximate any shape of the
training set, x, using Eq. (1) where Φ = (φ1|φ2| · · · |φt) and b is a
t dimensional vector given by b = ΦT (x− x̂). Assuming that the
cloud of landmark vectors follows a multi-dimensional Gaussian
distribution, the variance of the i-th parameter, bi, across the
training set is given by λi. By varying these parameters, different
instances of the shape class under analysis can be generated using
Eq. (1). By applying limits to the variation of bi, usually |bi| ≤
±3

√
λi, it can be enforced that a generated shape is similar to the

shapes contained in the training class.

2.2. Automatic Landmarking Method

The general layout of the method is to align all the shapes of the
training set to an atlas that can be interpreted as a mean shape.
Once all the necessary transformations are obtained, they are
inverted and used to propagate any number of arbitrarily sampled
landmarks on the atlas, to the coordinate system of each subject. In
this way, while it is still necessary to manually draw the contours in
each training image, our technique reliefs from manual landmark



Fig. 1. A snapshot of the database (90 shapes) at ED.

definition and for establishing the point correspondence across the
training set. A detailed description of the method can be found
in [1], but can be summarized as follows :

1. Manual segmentations of the training set are shape-based
interpolated to obtain isotropic voxels.

2. The resulting shapes (Fig. 2) are aligned through a quasi-
affine registration adapted from [4] (nine degrees of
freedom: translation, rotation, and anisotropic scaling)
to a Reference Sample (RS). This sample is randomly
chosen from the training set and is considered the first atlas
estimate.

3. A new atlas is constructed by shape-based averaging of the
aligned shapes and taking the zero-isosurface.

4. To minimize the bias introduced by the choice of the RS,
steps 2 and 3 are repeated until the atlas becomes stable. At
this point, the atlas is said to be in a Reference Coordinate
System (RCS).

5. Subsequently, each aligned sample shape is non-rigidly
registered to the RCS atlas.

6. The obtained transformations are then averaged and the
resulting averaged transformation is applied to the atlas in
RCS. The new atlas is said to be in a Natural Coordinate
System (NCS) (see Fig. 3 for a visual comparison). The
NCS atlas is unique regardless the RS election [1].

7. A new set of quasi-affine and non-rigid transformations are
recalculated in the same way as in 2 and 5.

8. Finally, any automatically generated landmarks in the NCS
atlas can be propagated to the samples shapes through the
transformations in 7.

9. In order to build the statistical shape model, a Procrustes
shape alignment and a Principal Component Analysis
(PCA) of the transformed landmarks is performed.

In all the registrations of the method (i.e. of multi-valued
images), Label Consistency (LC) [1] is used as the similarity

Fig. 2. Shape-based interpolated images

Fig. 3. RCS (a) and NCS (b) atlases

metric. For the non-rigid registrations, a multi-resolution Free
Form Deformation (FFD) registration algorithm is used [5], [6].
After the mesh is deformed at each resolution level, it can be
refined using a B-spline basis subdivision scheme. The number of
levels and initial resolution of the FFD is chosen as a compromise
between computational complexity (increasing with the number of
resolutions) and accuracy (improving with a smaller mesh spacing)
of the deformation. In our application, an initial resolution of
16×16×20mm3 and 4 resolution levels were used.



3. MATERIALS

3.1. Data Set Description

Our data set (see Fig. 1) contains 90 MR studies from CETIR
Sant Jordi Centre (Barcelona, Spain) randomly selected from
those acquired during 2002. These studies correspond to 21
healthy subjects, and 74 patients suffering from common cardiac
pathologies including myocardium infarction (25), hypertrophy
(21), LV dilation (6), LV aneurysm (2), RV dilation (2), LA
dilation(5), RA dilation (2), and pericarditis (4), among others.
The type, number, and relative proportion of pathologies, is
representative of typical examinations in the health center. For
each study, only the short axis view was considered. Expert
segmentations where manually drawn on three closed contours,
namely the endocardial left ventricle (LV ENDO) and right
ventricle (RV ENDO) borders, and the epicardial border of the
whole heart (HEART EPI). The 2-chamber model included 8-12
slices from the base to the apex. Following common clinical
practice, LV ENDO and RV ENDO contours did not include the
papillary muscles and trabeculae, and the HEART EPI contour was
drawn along the inner border of the epicardial fat layer. The base
slice was defined as the most basal slice with the RV still present.
The acquisition parameters were: TR: 3.75 4ms, TE: 1.5-1.58 ms,
FA: 45, slice thickness: 8–10 mm, slice size: 256 × 256 pixels,
resolution: 1.56 × 1.56 mm and FOV: 400 × 300 mm2, on a
General Electric CVI 1.5 T MR facility. Five phases of the cardiac
cycle were segmented. They are denoted : (i) ED (End Diastole),
(ii) MS (Mid Systole), (iii) ES (End Systole), (iv) D1 (Diastole 1),
and (v) D2 (Diastole 2).

3.2. Grid Computing

A well-known limitation of any non-rigid registration approach
is its high computational load. A single registration process (a
rigid registration, followed by a non-rigid elastic registration) takes
more than two hours in modern CPUs. When dealing with large
databases this issue becomes a serious problem for a wide-spread
applicability of the method. Distributed computing constitutes a
feasible solution. Among several possibilities, Grid computing
provides an easy way of taking benefit from off-the-shelf computer
clusters. Our Grid middleware platform is the InnerGrid Nitya
developed by GridSystems, running on a 13-node dual Xeon (2.8
GHz CPU, 2 GHz RAM) cluster, under Linux RedHat 9. In
combination, the cluster represents more than 36 GFlops. With
the described facility, for instance, the construction of an atlas of
all the phases (450 shapes) with 5 iterations, took approximately
3 hours. Considering that the average processing time for a rigid
registration of one sample to an atlas is 4.5 minutes and that the
shape-blending, pre- and post- processes tasks takes 16 minutes,
this time would represent one week of calculation for a single
CPU. For the non-rigid registration of the same 450 shapes, the
gridified process lasted 56.5 hours, while for a single CPU it would
have taken 1483 hours (two months).

4. EXPERIMENTS

The idea behind the design of the experiments was two fold. On
the one hand, it was interesting to test if the method could cope
with large data sets with clinically representative inter-subject and
inter-phase variability. On the other hand, the idea was to explore
the statistical value of our model by testing to which extent the
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Fig. 4. Convergence of the atlas construction algorithm - evolution of the LC
similarity metric over iterations
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Fig. 5. Percentage of total shape variance versus the number of modes used in the
ES and ED shape models.

number of patients in the training set was capable of describing
the shape variation of the healthy/diseased heart population.

Six different atlases were constructed. One for each phase
(5 atlases with 90 shapes each) and another atlas (denoted ALL)
including all the shapes of the five phases (450 shapes). The
iterative process adopted to construct the atlas has shown to
converge rapidly. Fig. 4 shows that two iterations were enough to
give a very high LC. The behavior of all the atlases was similar and
tended to stabilize at the same value. The atlas of the fifth iteration
was used for the following stages of the process. The influence of
the mesh density was also studied. Five mesh densities with 9603,
4998, 2583, 1333, and 694 landmarks were produced. The creation
of surface models with correct topology and optimized triangular
shape from the binary atlas volume was carried out automatically
with an improved marching cubes algorithm. Adaptive mesh
decimation was performed to achieve meshes with less number
of elements. Fig. 5 shows that the variance explained for the ED
and ES models is similar. For instance, to explain 98% of shape
variance, 73 and 74 modes are necessary in the ED and ES models,
respectively. The curves for different number of landmarks (not
shown) are almost coincident. A point to emphasize from here
is that regardless the mesh density (as long as the topology is
reasonably preserved), the shape variation is explained in the same
way. The reconstruction error of the shape model was assessed
by means of a leave-one-out test. Fig. 6 shows the results of the



Fig. 6. Reconstruction error in a leave-one-out experiment.

experiment carried out for the ED model with 2110 landmarks.
The behavior of other phases and mesh densities was very similar.
The reconstruction error, although not very high, does not stabilize
with larger number of modes. This may tell us that 90 subjects is
not yet large enough to appropriately model the shape variation in
the corresponding cardiac phase. Therefore, a larger training set
can still improve the generalization ability of the model.

In Fig. 7 the principal modes of variation of the ED model are
illustrated. The visual behavior of their variability is quite similar
for different mesh densities. It is also worth to emphasize that
the landmarks are propagated smoothly, preserving the topology,
without triangle flipping or surface folding.

5. CONCLUSIONS

The presented work shows that the method presented in [1] as a
proof-of-concept, can truly cope with large heterogenous data sets
of cardiac MR studies. A compact middleware Grid application
was designed to deal with the large computational cost of the
method. The generalization capability of the approach, suggests
feasibility for the use of other modalities (e.g. SPECT, CT) and
organs with shape variability not differing too much from that
of the heart (e.g. liver, kidneys). Future efforts will go in the
line of adding more subjects in the training set and other image
planes (e.g long axis views) to the model. In this way, the
shape model would benefit from shape information with increased
resolution, yielding a more compact atlas representation. Finally,
saying that the statistical shape models are intended to be included
in a fitting strategy capable of exploiting the achieved landmark
correspondence.
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